


Lecture Topic Projects 
1 Intro, schedule, and logistics    
2 Applications of visual analytics, data, and basic tasks   
3 Data preparation and reduction Project 1 out 
4 Data preparation and reduction   
5 Data reduction and similarity metrics   
6 Dimension reduction 

7 Introduction to D3  Project 2 out 
8 Bias in visualization 
9 Perception and cognition   

10 Visual design and aesthetics   
11 Cluster and pattern analysis   
12 High-Dimensional data visualization: linear methods Project 3 out 
13 High-D data vis.: non-linear methods, categorical data  
14 Computer graphics and volume rendering   
15 Techniques to visualize spatial (3D) data 
16 Scientific and medical visualization 
17 Scientific and medical visualization 
18 Non-photorealistic rendering Project 4 out 
19 Midterm   
20 Principles of interaction   
21 Visual analytics and the visual sense making process   
22 Visualization of graphs and hierarchies 
23 Visualization of text data Project 5 out 
24 Visualization of time-varying and time-series data 
25 Memorable visualizations, visual embellishments  
26 Evaluation and user studies   
27 Narrative visualization and storytelling    
28 Data journalism  



Data Reduction 



Dimension Reduction 

3D 2D 



Are there attributes that “go together”? 

 

 

 

 

 

 

 

Can you name a few?  

 

 

 

 

 

 

 

 



Physical attributes 

 color 

 number of doors 

 number of wheels 

 retractable roof 

 height  

 length 

 frames around side windows 

 

Which attributes are useful to distinguish SUVs from convertibles? 

 number of doors (4 vs. 2) --> numerical, two levels 

 retractable roof (no vs. yes) --> categorical, two levels  

 frames around side windows (yes vs. no) --> categorical, two levels 

 height (higher vs. lower) --> numerical, many levels 

 



Which attributes are not so useful? 

 number of wheels (constant 4) --> no discriminative power 

 length (short and long SUVs, convertibles) --> confounding  

 color (colors are seemingly random, or are they?) 

 

 

 

 

 

Is color useful? 

 the convertibles seem to have more vibrant colors (red, yellow, …) 

 so maybe we made a discovery   

 



Need to consider more than two attributes 
 height attribute would have distinguished the Range Rover from 

the convertibles and caused it to be an outlier  

retractable  

roof 

frames around  

side windows 

a new type of SUV  



New classes are constantly evolving over time 

 this is known as cluster evolution  

 measuring more features will increase the chance of discovery 

retractable  

roof 

new class: the convertible SUV 

height 

why can empty 

feature spaces 

be interesting or 

useful? 



The more data (examples) the better  

 increases the chances to discover the rare specimen 

 

 

 

 

 

 

 but some attributes are useless  

 we can cull them away 

 perform attribute reduction or dimension reduction  

 



By axis rotation (linear methods) 
 determine a more efficient basis  

 Principal Component Analysis (PCA) 

 Singular value decomposition (SVD) 

 Latent semantic analysis (LSA) 

 

By transformation (non-linear methods)  
 determine a more efficient data type 

 Fourier analysis and Wavelets for grids 

 Multidimensional scaling (MDS) for graphs 

 Locally Linear Embedding 

 Isomap 

 Self Organizing Maps (SOM) 

 Linear Discriminant Analysis (LDA) 

 





Covariance 

 measures how much two random variables change together  

 

 

 

 

 

 

For N variable we have N2 variable pairs  

 we can write them in a matrix of size N2  
 the covariance matrix  

 for two variables X1 and X2 



Covariance cov(X,Y) 

 

 

 

 

Pearson’s correlation r  

 is covariance normalized by the individual variances for X and Y 
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Correlation rates between -1 and 1: 

 

 

 

 

Important to note: 

 correlation is defined for linear relationships 

 visualization can help 

 none of these point distributions have correlations: 

 



Analytical: 

 

Samples: 

 

An n-D dataset has n variables x1, x2, … xn  
 define pairwise covariance among all of these variables  

 construct a covariance matrix  

 

 

 

 

 

 a correlation matrix would just list the correlations instead 
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just value distribution (scatterplot matrix) 



Ultimate goal:  

 find a coordinate system that can represent the variance in the 

data with as few axes as possible  

 

 

 

 

 

 

 

 

 rank these axes by the amount of variance (blue, red) 

 drop the axes that have the least variance (red)  



4.0 4.5 5.0 5.5 6.0
2

3

4

5

1st Principal  

Component, y1 

2nd Principal  

Component, y2 



Find the principal components (factors) of a distribution 

 

First characterize the distribution by  
 covariance matrix Cov 

 correlation matrix Corr 

 lets call it C 

 

 perform QR factorization or LU decomposition to get 

 

 

                     Q: matrix with Eigenvectors 

                     : diagonal matrix with Eigenvalues l 

 

 now order the Eigenvectors in terms of their Eigenvalues l 

1Q Q C
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When to use what? 

 use the covariance matrix when the variable scales are similar  

 use the correlation matrix when the variables are on different 

scales 

 the correlation matrix standardizes the data 

 in general they give different results, especially when the scales 

are different 

 

 

 



Before PCA 
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After PCA 

 l1 = 9.8783  l2 = 3.0308  Trace = 12.9091 

 PC 1 displays (“explains”) 9.8783/12.9091 = 76.5% of total variance 
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possible 

threshold 

(explain 

75% of data 

variance) 

keep top 3 principal components  reduce dimensions by a factor of 4/7 = 57%  

Create a scree plot 

 plots a histogram of the Eigenvalues ordered by magnitude 

 plots the explained variance as a curve    



Take a set of faces: 
 each image has 

60x60 pixels 

 can write it as a 
60x60 D = 3,600 D 
vector  

 space of images is 
therefore 3600 D 

 each image is a 
point in that space 

 

Perform PCA 
 will yield 3,600 

Eigenvectors in 
3,600 D space  

 each is a face 

 called “Eigenfaces”  

 

 

 

 



We can reconstruct a face as a linear combination of these 

Eigenfaces [M. Turk and A. Pentland (1991)] 

 

+ 

Average Face 

Eigenfaces 



90% variance is 

captured by the first 

50 eigenvectors 

Reconstruct existing 

faces using only 50 

basis images 

We can also generate 

new faces by 

combining 

eigenvectors with 

different weights 

V0 

x ∑ 



The axes of the space generated by PCA do not mean much 

semantically 

 the Eigenvectors are combinations of the actual data dimensions  

 can we use these to determine the most important data 

dimensions which would be more meaningful? 

 we shall explain it via an example  

 see next slides  



A More Challenging Example 
• Data from research on habitat definition 
of the endangered Baw Baw frog 

• 16 environmental and structural variables 
measured at each of 124 sites 

• Correlation matrix used because 
variables have different units 

Philoria frosti 



Axis Eigenvalue 
% of 

Variance 
Cumulative % 
of Variance 

1 5.855 36.60 36.60 

2 3.420 21.38 57.97 

3 1.122 7.01 64.98 

4 1.116 6.97 71.95 

5 0.982 6.14 78.09 

6 0.725 4.53 82.62 

7 0.563 3.52 86.14 

8 0.529 3.31 89.45 

9 0.476 2.98 92.42 

10 0.375 2.35 94.77 

Eigenvalues 



How Many Axes Are Needed? 

• Does the (k+1)th principal axis represent 
more variance than would be expected 
by chance? 

• Several tests and rules have been 
proposed 

• A common “rule of thumb” when PCA is 
based on correlations is that axes with 
eigenvalues > 1 are worth interpreting 

• In our example 4 Eigenvectors fit this 
criterion (we shall keep 3 for simplicity) 

 



Baw Baw Frog - PCA of 16 Habitat Variables
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Interlude - What’s a “Loading”? 
• The amount of weight a data dimension 

has on a principal component 

– petal length/width have a high loading on PC1 

– sepal width has a high loading on PC2 

 

• Another observation 

– projection into PC basis                                  

can also bring out                                            

clusters better 

– since spread is                                                 

maximized 

 

PC1 

PC2 

flower dataset 



Interpreting Eigenvectors 

• Correlations 
between variables 
and the principal 
axes are known as 
loadings 

• Each element of 
the eigenvectors 
represents the 
contribution of a 
given variable to a 
component 

• The loadings of 
variables on the 
first three PCs 
are shown here 

  PC 1 PC 2 PC 3 

Altitude 0.3842 0.0659 -0.1177 

pH -0.1159 0.1696 -0.5578 

Cond -0.2729 -0.1200 0.3636 

TempSurf 0.0538 -0.2800 0.2621 

Relief -0.0765 0.3855 -0.1462 

maxERht 0.0248 0.4879 0.2426 

avERht 0.0599 0.4568 0.2497 

%ER 0.0789 0.4223 0.2278 

%VEG 0.3305 -0.2087 -0.0276 

%LIT -0.3053 0.1226 0.1145 

%LOG -0.3144 0.0402 -0.1067 

%W -0.0886 -0.0654 -0.1171 

H1Moss 0.1364 -0.1262 0.4761 

DistSWH -0.3787 0.0101 0.0042 

DistSW -0.3494 -0.1283 0.1166 

DistMF 0.3899 0.0586 -0.0175 



Significance of Variables 

• We can compute the significance of the 
variables as the sum of squared loadings on to the 
most significant Eigenvectors we selected (3 in our 
example)  

• The next slide shows the table of the last slide 
expanded with these squared loadings 

• We can then sort the table by the squared 
loadings and make a scree plot 

• The most significant variables are those above 
some chosen cutoff, for example 0.4 (marked in 
yellow in the table) 

 



Significance of Variables 
  PC 1 PC 2 PC 3 

sum of squared 
loadings (sqrt)  

Altitude 0.3842 0.0659 -0.1177 0.41 

pH -0.1159 0.1696 -0.5578 0.59 

Cond -0.2729 -0.1200 0.3636 0.47 

TempSurf 0.0538 -0.2800 0.2621 0.39 

Relief -0.0765 0.3855 -0.1462 0.42 

maxERht 0.0248 0.4879 0.2426 0.55 

avERht 0.0599 0.4568 0.2497 0.52 

%ER 0.0789 0.4223 0.2278 0.49 

%VEG 0.3305 -0.2087 -0.0276 0.39 

%LIT -0.3053 0.1226 0.1145 0.35 

%LOG -0.3144 0.0402 -0.1067 0.33 

%W -0.0886 -0.0654 -0.1171 0.16 

H1Moss 0.1364 -0.1262 0.4761 0.51 

DistSWH -0.3787 0.0101 0.0042 0.38 

DistSW -0.3494 -0.1283 0.1166 0.39 

DistMF 0.3899 0.0586 -0.0175 0.39 



Significance of Variables 

• Scree plot   

 

only eliminate  

very weak  

variables 

more aggressive  

reduction of variables 
variables considered  

significant 

chosen  

significance  

threshold  



Learned about: 
 feature vectors, each feature is a data attribute, dimension  

 distinguish useful from not so useful  features with regards to 
data discrimination  dimension reduction 

 plot data into feature space and observe clusters 

 

 correlation vs. covariance 

 algorithmic dimension reduction, summary of popular dimension 
reduction schemes – linear vs. non-linear  

 

 basic linear scheme: Principal Component Analysis (PCA)  

 application of PCA to face detection and generation  

 scree plot to visualize and select the most important PCA axes  

 use of PCA loading analysis to determine the most significant 
data features 

 

 

 

 

 

 


